A Bayesian Approach to

Sensor Characterization

Dogan A. Timugin

NASA Ames Research Center, Mail Sop 269-3, Moffett Field, California 94035, USA
(650) 604-1262 ¢ t i muci n@pt ol eny. ar c. nasa. gov

Abstract— The physical model of a generic electro-optic sensor
is derived and incorporated into a Bayesian framework for the
estimation of key instrument parameters from calibration data.

The sensor characterization thus achieved enables optimal sub-
sequent removal of instrument effects from field data, leading to |

the highest possible accuracy in the retrieved physical quantities.

|. INTRODUCTION

During the act of measuring a physical signal, a sensor
inevitably imparts its own “signature” by altering the signa
properties in some unique fashion; in this sense, the measure-
ment device constitutes an integral part of any physical data-
collection process. In terrestrial remote sensing, instruments
are typically used as relative-measurement devices, for which
a complete remova of such “sensor effects’ is not crucia:
these devices are simply made to agree with each other
by calibrating them against standard sources. Their common
calibrated outputs may, however, still differ appreciably from
the true physical input provided by the calibration source.

In order to be able to perform accurate absolute mea-
surements, especialy of small features in sparse data, it is
therefore necessary to develop sophisticated calibration and
data-processing algorithms based on a detailed physical model
of the sensor. We further maintain that, whenever a parametric
model of an observed physical system can be formulated from
first principles, the most natura tool for analyzing the col-
lected data is Bayesian inference. Thisis arich and venerable
parameter-estimation technique that is enjoying wide-spread
popularity in the scientific data-analysis community on the
heels of dramatic recent advances in computational techniques
and power. In this paper, we present a Bayesian approach
toward characterizing the salient features of a generic electro-
optic sensor via fairly rudimentary calibration experiments.

Il. BAYESIAN INFERENCE

At the heart of the Bayesian approach to data analysisis the
famous theorem of Bayes (1763) and Laplace (1812), stated
here for two continuous-valued random variables x and 6 [1]:
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where p(z) denotes the marginal probability density function
(PDF) of z, while p(x|6) denotes the conditional PDF of x
given a specific value of 4; similarly for p(6) and p(f|x). Inthe
Bayesian philosophy, these PDFs are viewed as representing
our state of knowledge: the sharper, say, p(#) is around some
value 6*, the more confident we are that # ~ #* in actuality.
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In the context of data analysis, = denotes an experimental
measurement, and 6 represents an unknown parameter asso-
ciated with the experiment, the objective being the estimation
of this parameter from the observation.® In this setting, p(6)
is referred to as the a priori PDF of 6, representing our
initial “best guess’ and associated uncertainty about 6. Upon
observation, this prior is transformed into the a posteriori
PDF p(f|x) via Bayes theorem (1). This transformation is
facilitated through the likelihood function p(z|¢), whose form
represents the solution of the underlying modeling problem.

A sharper posterior relative to the prior indicates an im-
proved confidence on our part as to the value of 6 after
having seen the data; a suitable decision rule may now be
used to infer an optimal estimate 0* (see Fig. 1). The Bayesian
approach thus utilizes the solution of the conceptually easier
“forward” modeling problem to solve the more difficult, and
arguably more interesting, “inverse” inference problem, with
domain expertise efficiently brought to bear via the prior and
the likelihood. Incidentally, Bayesian inference subsumes the
more familiar techniques of maximum likelihood estimation
and least-squares fitting as specia cases corresponding to a
uniform prior and a Gaussian posterior, respectively [2].

1The extension to multiple parameters and data is obvious; cf. Sec. IV.
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Fig. 1. The classic depiction of the Bayesian learning process. The uniform
prior p(@) signifies a complete lack of initial knowledge about the unknown
parameter 0. As evidenced by the steady sharpening of the posterior, this
uncertainty is reduced gradually by applying (1) iteratively on a sequence of
observations {z,, n = 1,2,..., N}. After the find iteration, the maximum
a posteriori decision strategy yields the optimal estimate 6*.



I1l. SENSOR MODEL

A brute-force, “frontal attack” toward sensor modeling is
typically hindered by severe practical difficulties stemming
from the complicated designs of most instruments, the details
of which may not even be fully known or accessible for
characterization by the user, but are always subject to random
and unpredictable (mechanical, thermal, optical, etc.) pertur-
bations during operation. We therefore adopt a reductionist
approach instead, whereby the sensor is treated as a “black
box” intended to provide a robust and economical description
of the salient instrument features. With an eye toward Bayesian
inference, we derive parametric models for the optical and
electrical subsystems of a generic sensor. These subsystems,
connected through the (nonlinear) process of photodetection,
are separately assumed to be linear and time-invariant, as is
appropriate for a sensor intended as a measurement device.

A. Deterministic Analysis

The optical wave incident on the sensor aperture ¥; serves
as the input to the optical subsystem, whose output, in turn,
is another optical wave incident on a detector aperture X,
terminating the optical train (see Fig. 2(a)). The most general
relationship between the electric fields associated with these
input and output waves may be written in the form
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where the 3 x 3 point-spread matrix T models the disper-
sive, space-varying response of the optical subsystem. As is
typically the case in practice, this response is assumed to be
narrow-band, centered around some frequency w . determined,
e.g., by acolor filter or agrating in the optical train. Note that it
suffices to track only the electric fields, since the correspond-
ing magnetic fields may be obtained through Faraday’s law
asH(7t) = —L [* ¥V x E(F,')dt". The connection with
the electrical sugsystem is established through the total optical
power P(t) incident on the detector (see Fig. 2(b)). In terms of
the Poynting vector S(7,t) = £(7, t) x H (7, t) giving the den-
sity and direction of propagation of electromagnetic power [3],
we have (for a planar detector) P(t) =[5, S.(fo,t) d* .

A portion of this power is absorbed inside the photodiode
and leads to the creation of charge carriers at some rate
r(t), which, along with “dark” carriers thermally induced at
a rate p, congtitute the photodiode current i,4(¢). The dark
rate p depends chiefly on temperature and may therefore be
assumed constant during a single experiment. Meanwhile, the
photoelectron generation rate may be put in the form
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a,B = xz,y, where A;, denotes the complex envelope of
Eia- (The key to reaching (3) is the representation of the
incident field envelope in terms of its angular plane-wave
spectrum A;(k,w) = [[°0 Ai(7i, 1) e 1 F A0 @25, dt [4].)

The complex-valued functions A s thus introduced involve,
in some complicated fashion, the (independent) elements of
T, the shapes and sizes of ¥; and X, as well as the detector
quantum efficiency; in keeping with the reductionist spirit, we
do not concern ourselves here with their exact analytic form.

Two electrical outputs are identified. The continuous signal
vy IS envisaged as the output voltage of an integrator inside
an analog-to-digital converter (ADC). With f(¢) denoting the
overall baseband transimpedance impulse response, we have
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Here, t;, and ¢; respectively denote the time instants of photo-
and thermally-induced charge-carrier excitations inside the
photodiode, and &(¢) represents the independent thermal-noise
fluctuations of the electronic circuitry. The first term on the
right side of (4) is labeled as the “signal” voltage vts), while
the two remaining terms together comprise the “noise” voltage
vi"). The discrete signal s; is then obtained by passing vy
through a b-bit quantizer inside the ADC, and is assumed to
be the actual instrument reading available to the user.?

B. Satistical Analysis [5]

We now seek to derive the PDF p(v) of the continuous
output signal v, in (4); it is actually more convenient to deal
instead with the corresponding characteristic function (CF)

2As a subscript, ¢ indexes epochs of duration T. — the preset integration
time of the sensor — marking the time instants of data read-out.
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Fig. 2. Sketch of a generic electro-optic sensor. (a) T(a; f;;t) represents
the entire optical train consisting of lenses, mirrors, waveguides, gratings,
etc., residing between some suitably defined input (i) and output (0) planes.
The elements of T connect the various polarization components of &; and
&o. (Note that T is of second rank, since both &; and &, are divergence-free
by virtue of Gauss's law.) (b) f(t) represents the entire electrical baseband
consisting of the photodiode, a front-end amplifier, and an integrator. The
output signal v; is quantized to produce s¢, which is then presented to the
user as a b-hit digital number. (In an imaging or hyper-spectral instrument,
each photodiode constitutes an electro-optic “channel” of this sort, with the
diode currents typically multiplexed through a common amplifie—ADC path.)



C(u) = [Z_p(v)e" dv = C)(u) C™ (u). Thermal noise
is customarily modeled as a zero-mean, Gaussian stochastic
process, while dark noise constitutes a filtered, homogenenous
Poisson point process; i.e., shot noise [1]. On the other hand,
due to the inherent randomness of optical wavefields, r(t) is
itself a stochastic process, rendering vts) a filtered, doubly-
stochastic Poisson point process [6], [7]. Thus,
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where 2. denotes the thermal noise variance, and the PDF
p(r) of the rate process r(t) is to be determined subsequently
by elucidating the incident field statistics (cf. Sec. IV).

For further analytical progress, we now make in (5) the
practicaly justifiable assumption that T, far exceeds the time
constants associated with the photodiode and amplifier impulse
responses. This leads to the “ photon-counting” approximation
f(t) ~ve =T, 0 <t < T, wherey is the DC gain of the
amplifier and e is the electronic charge. With C',(u) denoting
the CF of the integrated intensity w = ft 7, r(t") dt’, wefind

C(u) = T (=037 0 i (1= M) ()

Incidentally, all moments of v; can be calculated exactly from
(5) as (vP) = L L0 Fmally, the PDF of the discrete sensor

iP duP
output is P{S;} = fv v) dv, or more conveniently

C(u) =

P{S,} = %[ C'(u) sinc <Z—Z> e Sadu, (7)

g = 1,2,...,2% where S, and V, respectively IabeI the
guantization levels and thresholds, AV and § = 2,, are the
ADC dynamic range and resolution, and sinc(z) = sin(re)

™

IV. BAYESIAN SENSOR CHARACTERIZATION

The dtatistics of the radiation source must now be con-
sidered to complete the problem description. We envisage
the use of both thermal and laser sources in order to fully
characterize the spectral, angular, and polarization responses of
the sensor. For an unpolarized, wide-band thermal source such
as an incandescent calibration lamp, the complex envelope of
the electric field is modeled as a circular complex Gaussian
stochastic process. On the other hand, alinearly-polarized laser
sourceis characterized by a strong coherent wave accompanied
by a narrow-band thermal field representing spontaneous-
emission noise. An expression covering both cases is [6]
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where the integrated intensity has been decomposed into
coherent and thermal parts as w = w + @, and M denotes the
number of spatio-temporal modes of thermal radiation con-
tributing to w. For a given source and a specific illumination
geometry, one can relate w, (w), and M to fundamental source
characteristics and sensor parameters through (3) [4], [6], [7].

Theuse of (6) and (8) in (7) leads to an Edgeworth series[1]
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where H,,(-) are the Hermite polynomlals, and we have
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We thus see that © = {w, (w), M, p, o3} congtitutes the set
of unknown parameters in a calibration experiment where a
sequence = = {s,,n = 1,2,..., N} of measurements is
made. Note that v = 0 for calibration with a thermal lamp,
while w = 0 for dark calibration. Assuming that 7. is long
enough for the samples to become independent, and with
P {s,|©} given by (9), we may now rewrite (1) in the form

= N
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from which elements of ® may be inferred as in Sec. II.

V. CONCLUSION

Although many details have been omitted due to limited
space, the theory presented here should provide a comprehen-
sive philosophical and analytical framework for the Bayesian
characterization of awide variety of electro-optic sensors from
their calibration data. A notable omission is the optical back-
ground noise, perhaps most commonly encountered as inter-
pixel cross talk in imaging and hyper-spectral instruments,
whose characteristics are hard to elucidate with any degree of
generality and must be considered carefully for each individual
instrument [5]. An important closing remark pertains to the
issue of unreliable standards, which may be aleviated by
monitoring, and correcting for, the source variations through
the long-term time evolution of the inferred parameters.
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